EEGrunt consists of a collection of functions for reading EEG data from CSV files, converting and filtering it in various ways, and finally generating pretty and informative visualizations.
Features
- EEGrunt is compatible with data from OpenBCI and Muse.
- EEGrunt has bandpass, notch, and highpass filters for cleaning up powerline interference, OpenBCI's DC offset, and zeroing in on the frequency band you want to analyze.
- EEGrunt makes it easy to generate signal plots, amplitude trend graphs, spectrograms, and FFT (fast-fouier transform) graphs, etc.
Here is my small code adaptation from the original analyze_data.py file:
import EEGrunt
source = 'openbci'
path = 'data/'
filename = 'eegrunt-obci-ovibe-test-data.csv'
session_title = "OpenBCI EEGrunt Test Data"
EEG = EEGrunt.EEGrunt(path, filename, source, session_title)
EEG.plot = 'show'
EEG.load_data()
print "\n\n\nChannels:" + str(EEG.channels)
for channel in EEG.channels:
EEG.load_channel(channel)
print("Processing channel "+ str(EEG.channel))
EEG.remove_dc_offset()
EEG.notch_mains_interference()
EEG.signalplot()
EEG.get_spectrum_data()
EEG.data = EEG.bandpass(0,1)
EEG.spectrogram()
EEG.plot_band_power(8,12,"Alpha")
EEG.plot_spectrum_avg_fft( )
EEG.showplots()
For more information about BCI/EGG press here.
No comments:
Post a Comment